PENILAIAN KETAHANAN TANAMAN AROMATIK TERHADAP LOGAM BERAT KADMIUM MELALUI ANALISA PERTUMBUHAN
Abstract
Kontaminasi tanah pertanian dengan logam berat beracun dapat memengaruhi produktivitas dan keamanan tanaman sebagai tanaman pangan dan pakan, dan hal ini menjadi masalah lingkungan yang berat. Tanaman yang tahan logam berat dan aman diperlukan dalam fitoremediasi, antara lain tanaman aromatik karena tanaman tersebut bukan tanaman makanan dan pakan. Dalam hal ini perlu dilakukan penelitian guna menilai ketahanannya terhadap kadmium melalui analisa pertumbuhannya. Penelitian ini menggunakan RAK faktorial; faktor I: jenis tanaman aromatik {T1 = akar wangi (Vetiveria zizanioides), T2 = serai wangi (Cymbopogon nardus), T3 = serai (Cymbopogon citratus), T4 = nilam (Pogostemon cablin), T5 = ruku-ruku (Ocimum tenuiflorum)}. Faktor II: konsentrasi logam berat Cd (K0= 0 ppm, K1= 85 ppm, K2= 170 ppm, K3= 255 ppm, K4= 340 ppm) dimana setiap perlakuan dibuat dalam 3 ulangan. Parameter yang diamati adalah volume akar, berat basah akar dan berat basah tajuk. Data hasil penelitian dianalisis menggunakan IBM SPSS Statistics 20, perlakuan yang menunjukkan pengaruh nyata terhadap peubah yang diamati dilanjutkan dengan uji DMRT pada taraf kepercayaan 5%. Selanjutnya dilakukan penghitungan persentase selisih data antara yang ditanam dengan Cd dan tanpa Cd. Dari hasil pengujian sidik ragam, faktor konsentrasi kadmium tidak memberi pengaruh kepada semua parameter. Tanaman serai wangi menunjukkan pertumbuhan yang tertinggi memlalui volume akar, berat basah akar dan berat basah tajuk namun untuk volume akar tidak berbeda dengan serai dan akar wangi. Akar wangi dan ruku-ruku pertumbuhannya secara konsisten lebih tinggi pada semua parameter yang diamati di bawah Cd dibanding tanpa Cd. Tanaman akar wangi, serai wangi, serai dan ruku-ruku dapat dijadikan alat fitoremediasi pada suatu kawasan yang tercemar logam berat kadmium.
References
Baker, A. J. M. (1981). Accumulators and Excluders - Strategies in the Response of Plants to Heavy Metals. Journal of Plant Nutrition, 3(1–4), 643–654. https://doi.org/10.1080/01904168109362867
Bini, C., Wahsha, M., Fontana, S., & Maleci, L. (2012). Effects of heavy metals on morphological characteristics of Taraxacum officinale Web growing on mine soils in NE Italy. Journal of Geochemical Exploration, 123, 101–108. https://doi.org/10.1016/j.gexplo.2012.07.009
Chen, Y., Shen, Z., & Li, X. (2004). The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals. Applied Geochemistry, 19(10), 1553–1565. https://doi.org/10.1016/j.apgeochem.2004.02.003
Dobrikova, A., Apostolova, E., Hanć, A., Yotsova, E., Borisova, P., Sperdouli, I., Adamakis, I. D. S., & Moustakas, M. (2021). Tolerance mechanisms of the aromatic and medicinal plant salvia sclarea l. To excess zinc. Plants, 10(2). https://doi.org/10.3390/plants10020194
Ebbs, S. D., & Kochian, L. V. (1997). Toxicity of Zinc and Copper to Brassica Species: Implications for Phytoremediation. Journal of Environmental Quality, 26(3), 776–781. https://doi.org/10.2134/jeq1997.00472425002600030026x
Ng, C. C., Boyce, A. N., Abas, M. R., Mahmood, N. Z., & Han, F. (2020). Evaluation of Vetiver Grass Uptake Efficiency in Single and Mixed Heavy Metal Contaminated Soil. Environmental Processes, 7(1), 207–226. https://doi.org/10.1007/s40710-019-00418-2
Panda, D., Panda, D., Padhan, B., & Biswas, M. (2018). Growth and physiological response of lemongrass (Cymbopogon citratus (D.C.) Stapf.) under different levels of fly ash-amended soil. International Journal of Phytoremediation, 20(6), 538–544. https://doi.org/10.1080/15226514.2017.1393394
Pandey, J., Verma, R. K., & Singh, S. (2019). Suitability of aromatic plants for phytoremediation of heavy metal contaminated areas: a review. In International Journal of Phytoremediation (Vol. 21, Issue 5). https://doi.org/10.1080/15226514.2018.1540546
Pirzadah, T. B., Malik, B., & Dar, F. A. (2019). Phytoremediation Potential of Aromatic and Medicinal Plants: A Way Forward for Green Economy. Journal of Stress Physiology & Biochemistry, 15(3), 62–75.
Purba, R.S., J. Ginting, J. Ginting, 2017. Respons Pertumbuhan Stek Nilam (Pogostemon cablin Benth.) pada Berbagai Bahan Tanam dan Konsentrasi IBA. Jurnal Agroekoteknologi Vol 5 No 4 (104): 799-805
Rai, V., Vajpayee, P., Singh, S. N., & Mehrotra, S. (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Science, 167(5), 1159–1169. https://doi.org/10.1016/j.plantsci.2004.06.016
Sinha, S., Mishra, R. K., Sinam, G., Mallick, S., & Gupta, A. K. (2013). Comparative Evaluation of Metal Phytoremediation Potential of Trees, Grasses, and Flowering Plants from Tannery-Wastewater-Contaminated Soil in Relation with Physicochemical Properties. Soil and Sediment Contamination, 22(8), 958–983. https://doi.org/10.1080/15320383.2013.770437
Sumiartha, K., Kohdrata, N dan Antara N. S., 2012. Modul Pelatihan Budidaya dan Pasca Panen Tanaman Serai (Cymbopogon cytratus). Bali Pusat Studi Ketahanan Pangan Universitas Udayana.
US EPA, 1993. U.S. Environmental Protection Agency Reregistration Eligibility Decision (RED) Glyphosate. U.S. Environmental Protection Agency, Washington, DC (EPA-738-R-93-014).
Zhang, X., Gao, B., & Xia, H. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicology and Environmental Safety, 106, 102–108. https://doi.org/10.1016/j.ecoenv.2014.04.025
Zheljazkov, V. D., Craker, L. E., & Xing, B. (2006). Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany, 58(1–3), 9–16. https://doi.org/10.1016/j.envexpbot.2005.06.008
Zhu, G., Xiao, H., Guo, Q., Zhang, Z., Zhao, J., & Yang, D. (2018). Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety, 158(April), 300–308. https://doi.org/10.1016/j.ecoenv.2018.04.045